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struct the Lie algebroid Poisson sigma model. This is yielded by gauging a Hamiltonian
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tization approach in the AKSZ geometrical version to ensure consistent quantization and

target space covariance. The model has an extremely rich geometry and an intricate BV

cohomology, which are studied in detail.
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1. Introduction

In geometry and in physics, symmetry is normally described in terms of groups and group

actions. However, there are more general forms of symmetry, which do not let themselves

be dealt with in that way, but which, nevertheless, are clearly recognizable as such. The

mathematical structure that underlies them is that of groupoid and groupoid action.

The algebraic notion of groupoid was introduced by W. Brandt in 1926 as a general-

ization of that of group [1]. Since then, groupoids have found a wide range of mathematical

applications. Topological and Lie groupoids, groupoids equipped with a compatible topo-

logical and differential structure, were used systematically by Ehresmann in his work in

algebraic and differential geometry [2]. Groupoids were also employed in algebraic geome-

try by Grothendieck The notion of principal bundles with structure groupoid was worked

out by Connes in the study of the holonomy groupoid of a foliation in [5]. Coste, Dazord,

Weinstein, Karasev and Zakrzewski used symplectic groupoids, Lie groupoids equipped

with a compatible symplectic structure, in the study of non commutative deformations of

the algebra of smooth functions on a manifold [6 – 9]. In [10], Weinstein introduced Poisson
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groupoids as generalizations of both Poisson Lie groups and symplectic groupoids. See [11]

for a review of applications of groupoids in mathematics.

Lie algebroids were first studied by Pradines in the early sixties in relation with Lie

groupoids. [12]. Since then, they have proved to provide a very general and flexible frame-

work for studying a wide range of geometrical structures.

Lie algebroids are a vector bundle generalization of Lie algebras. A Lie algebra is just

a Lie algebroid over a point. To any Lie groupoid there is associated a Lie algebroid much

in the same way as to a Lie group there is associated a Lie algebra. Therefore, Lie algebroid

theory parallels Lie groupoid theory as the infinitesimal version of the latter. However, the

scope of Lie algebroids is broader, since, unlike what happens for ordinary Lie algebras,

not every Lie algebroid is integrable to a Lie groupoid. The conditions for integrability

were found in [13].

In recent years, Lie groupoids and Lie algebroids have attracted much interest also in

theoretical physics because of their potential of describing the generalized forms of sym-

metry arising in the so called non linear gauge theories [14]. In ordinary linear gauge

theories, the symmetries are local, the symmetry algebra closes off-shell and the symme-

try algebra structure constants are field independent. By contrast, in non linear gauge

theories, the symmetries are still local, but the symmetry algebra closes only on-shell and

the symmetry algebra structure constants are field dependent (and, so, actually structure

functions). While the symmetries of linear gauge theories are amenable by standard Lie

theoretic techniques in an essentially finite dimensional setting, those of non linear gauge

theories are not manifestly so. This renders the geometrical properties of non linear gauge

theories rather mysterious and poses serious problems for their consistent quantization.

Lie groupoids and Lie algebroids constitute a promising framework for studying the

symmetries of non linear gauge theories [15, 16]. They can accommodate the local sym-

metries of these theories while still allowing for an essentially finite dimensional treatment.

Moreover, they reproduce the standard Lie theoretic framework in the linear case.

This approach, though completely general, has been adopted mostly in the study of the

Poisson sigma model [17, 18], the prototype non linear gauge theory, and related models.

In [19 – 21], the field equations of these field theories are interpreted as morphisms from

the space-time tangent Lie algebroid to a certain target Lie algebroid and their on-shell

symmetries as homotopies of such morphisms. In [22, 23], a Poisson sigma model with

an integrable Poisson target manifold is considered, the field equations are interpreted as

morphisms from the world sheet fundamental groupoid to the target manifold integrating

groupoid and the symmetries are described in terms of an infinite dimensional groupoid

of maps from the world sheet to this groupoid. In [24], these constructions have been

interpreted in terms of the geometry of appropriate principal groupoid bundles. The present

work is one more step in the same direction, but from a different perspective.

The Poisson-Weil sigma model, introduced by us in ref. [25] and further refined in [26]

(see also [27]), is a Poisson sigma model in which a Hamiltonian Lie group symmetry

of the target space is gauged. In [26], it is shown that, upon carrying out an appropriate

gauge fixing, the Poisson-Weil model yields the 2-dimensional version of Donaldson-Witten

topological gauge theory, describing the moduli space of flat connections on a closed sur-
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face [28, 29], in the pure gauge case where the target space is a point, and the gauged A

topological sigma model describing the moduli space of solutions of the so called vortex

equations worked out by Baptista [30 – 32], in the case where the target space is a manifold

with a Kaehler structure preserved by the symmetry action. In this paper, developing

on the results of [25, 26], we construct the Lie algebroid Poisson sigma model. In simple

terms, this is a Poisson sigma model in which a Hamiltonian Lie groupoid symmetry of the

target space is gauged. In more precise terms, we consider the Poisson sigma model on a

Poisson manifold X fibered over another manifold M and gauge the symmetry associated

with a Hamiltonian infinitesimal action of a regular Lie algebroid L over M on X. Though

we have in mind especially the case where L is the Lie algebroid AG of a Lie groupoid G,

the model is consistently defined also when L is not integrable. The whole construction

is conceived in such a way to reproduce the Poisson-Weil sigma model of refs. [25, 26] in

the particular case where M is a point and L is an ordinary Lie algebq The model has

a rich geometry. The kernel ker ρ of the anchor ρ of L plays a central role in the whole

construction. The target space geometry involves a generalized moment map, which is

defined only on sections of ker ρ. When the Lie algebroid L integrates to a Lie groupoid

G, the model encodes a generalized fiberwise Hamiltonian reduction of the target Poisson

manifold X [33, 34].

We use the Batalin-Vilkoviski (BV) quantization approach [35, 36] in the geometrical

version of Alexandrov, Kontsevich, Schwartz and Zaboronsky (AKSZ) [37], as developed

by Cattaneo and Felder in [38, 39], to ensure consistent quantization and target space

covariance. The BV cohomology is turns out to be quite intricate, being the total coho-

mology of a double complex interpolating the Lie algebroid cohomology complex of L and

the tangential Poisson cohomology complex of X.

The hope of our endeavor is to find sensible gauge fixing prescriptions of the Lie

algebroid Poisson sigma model yielding interesting topological field theories generalizing

the ones mentioned above (see [23] for an attempt in this direction). We leave this for

the future. On a broader perspective, our work is to be considered a theoretic experiment

aimed to exploring possible new lines of development of quantum field theory.

The paper is organized as follows. In section 2, we review briefly the basic notions

of the theory of Lie algebroids and Lie algebroid infinitesimal actions on fibered Poisson

manifolds. In section 3, we illustrate the Lie algebroid Poisson sigma model and its main

properties. In section 4, we review briefly various cohomologies associated to the target

space geometry of the model. In section 5, relying on the results of section 4, we study

in detail the BV cohomology. In section 6, after reviewing briefly the basic notions of

the theory of Lie groupoids, we describe the generalized fiberwise Hamiltonian reduction

encoded in the target space geometry of the model in the integrable case. In section 7,

we illustrate a few examples. Section 8 contains some concluding remarks. Finally, in

app. A–C, we conveniently collect some of the technical details of the analysis expounded

in the main body of the paper.
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2. Lie algebroids and their action on Poisson manifolds

In this section, we shall review briefly the basic notions of the theory of Lie algebroids

and Lie algebroid infinitesimal actions [40 – 42], concentrating on actions on fibered Poisson

manifolds because of their relevance on the following constructions [43]. We have expressed

the relevant geometrical relations also in local coordinates to help the reader to check the

calculation on his/her own.

A Lie algebroid is a vector bundle L over a manifold M equipped with a bundle map

ρ : L → TM , called the anchor and an R-linear bracket [·, ·] : Γ(L) × Γ(L) → Γ(L) with

the following properties.

1) [·, ·] is a Lie bracket so that Γ(L) is a Lie algebra:

[s, t] + [t, s] = 0, (2.1)

[s, [t, u]] + [t, [u, s]] + [u, [s, t]] = 0, (2.2)

for s, t, u ∈ Γ(L).

2) ρ defines a Lie algebra morphism of Γ(L) into Γ(TM):

ρ([s, t]) = [ρ(s), ρ(t)]TM , (2.3)

for s, t ∈ Γ(L), where [·, ·]TM is the usual Lie bracket of vector fields of M .

3) The Leibniz rule holds:

[s, ft] = f [s, t] + (lρ(s)f)t, (2.4)

for f ∈ C∞(M) and s, t ∈ Γ(L), where lv denotes Lie derivation along a vector field

v ∈ Γ(TM).

The prototype Lie algebroid over M is the tangent bundle TM : the anchor is the

identity idTM and the bracket is the usual Lie bracket [·, ·]TM . Lie algebroids generalize Lie

algebras: a Lie algebra can be viewed as a Lie algebroid over the singleton manifold M = pt.

Let {ei} be a local frame of L. Then, one has

ρ(ei) = ρi
r∂r, (2.5)

[ei, ej ] = fk
ijek. (2.6)

ρi
r, fk

ij are called the anchor and structure functions of L, respectively. From (2.1)–(2.4),

they satisfy

f i
jk + f i

kj = 0, (2.7)

f i
jmfm

kl + f i
kmfm

lj + f i
lmfm

jk + ρj
r∂rf

i
kl + ρk

r∂rf
i
lj + ρl

r∂rf
i
jk = 0, (2.8)

ρi
s∂sρj

r − ρj
s∂sρi

r − fk
ijρk

r = 0. (2.9)

– 4 –



J
H
E
P
1
2
(
2
0
0
8
)
0
6
2

A Lie algebroid L over M is said regular, if the anchor ρ has locally constant rank. In

such a case, ker ρ is a bundle of Lie algebras, but not a Lie algebra bundle in general. If L

is regular, Γ(ker ρ) is a Lie ideal of Γ(L). A Lie algebroid is said transitive, if ρ is surjective.

A transitive Lie algebroid is obviously regular and its ker ρ is a Lie algebra bundle.

For a regular Lie algebroid, we can choose adapted frames {ei} = {eα} ∪ {eκ}, where

{eα} is a frame of ker ρ. Such frames will be tacitly assumed, unless otherwise stated.

Clearly, one has

ρα
r = 0 (2.10)

identically. Further,

fκ
iα = 0, (2.11)

since Γ(ker ρ) is a Lie ideal.

A (base preserving) morphism of two Lie algebroids L, L′ over M is a vector bundle

morphism ϕ : L → L′ such that

ρ′ ◦ ϕ = ρ, (2.12)

ϕ([s, t]) = [ϕ(s), ϕ(t)]′, (2.13)

with s, t ∈ Γ(L).

If K, L are two Lie algebroids over M and K is a subbundle of L, then K is a

subalgebroid of L, if the natural injection ι : K → L is a Lie algebroid morphism. If L is

regular, then K = ker ρ is a subalgebroid of L.

We recall that a fibered manifold is a manifold X together with a surjective submersion

J : X → M onto another manifold M .

Let L be a Lie algebroid over M and let J : X → M be a fibered manifold. An

infinitesimal action of L on X along J is an R-linear map u : Γ(L) → Γ(TX) with the

following properties [42].

1) u is C∞(M)-linear:

u(fs) = (f ◦ J)u(s), (2.14)

for f ∈ C∞(M) and s ∈ Γ(L).

2) u is a Lie algebra morphism:

u([s, t]) = [u(s), u(t)]TX , (2.15)

for s, t ∈ Γ(L).

3) u is projectable:

TJ(u(s)) = ρ(s) ◦ J, (2.16)

for s ∈ Γ(L), where TJ is the tangent map of J .

The last conditions implies that the vector fields u(s) with s ∈ Γ(ker ρ) are tangent to

the fibers of J .
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Upon picking a frame {ei} of L, one has

u(ei) = ui
a∂a, (2.17)

where ui
a are the Lie algebroid action functions. From (2.14)–(2.16), they satisfy:

ui
b∂buj

a − uj
b∂bui

a − fk
ij ◦ Juk

a = 0, (2.18)

ui
a∂aJ

r = ρi
r ◦ J. (2.19)

To an infinitesimal action of L on X along J , there is canonically associated a Lie alge-

broid structure on the pull back vector bundle J∗L. Its definition invokes the isomorphism

C∞(X) ⊗C∞(M) Γ(L) ≃ Γ(J∗L) given by f ⊗ s → f(s ◦ J) with f ∈ C∞(X), s ∈ Γ(L).

The anchor and Lie bracket are then defined by

ρJ(f ⊗ s) = fu(s), (2.20)

[f ⊗ s, g ⊗ t]J = fg ⊗ [s, t] + (flu(s)g) ⊗ t − (glu(t)f) ⊗ s, (2.21)

for f, g ∈ C∞(X), s, t ∈ Γ(L). The resulting Lie algebroid is called the action Lie algebroid

corresponding to the infinitesimal action and is usually denoted by L ⋉ J . The anchor and

structure functions of L ⋉ J are ui
a and f i

jk ◦ J , respectively, as is easy to see.

A Poisson structure on a manifold X is a 2-vector field P ∈ Γ(∧2TX) satisfying the

Poisson condition

[P,P ]∧∗TX = 0, (2.22)

where [·, ·]∧∗TX is the Schouten-Nijenhuis bracket. The Poisson structure P allows the

definition of a Poisson bracket on X by setting {f, g}P = P (df, dg), where f, g ∈ C∞(X).

X is thus called a Poisson manifold.

In local coordinates, P is given by

P =
1

2
P ab∂a ∧ ∂b. (2.23)

Then, the Poisson condition (2.22) reads

P ad∂dP
bc + P bd∂dP

ca + P cd∂dP
ab = 0. (2.24)

A fibered Poisson manifold is a fibered manifold J : X → M together with a Poisson

structure P on X satisfying the condition

P (TJ)∗ = 0, (2.25)

where we view P ∈ Γ(Hom(T ∗X,TX)). Intuitively, this means that the 2-vector field P

is everywhere tangent to the fibers of J . X can then be viewed as a family of Poisson

manifolds smoothly parametrized by M .

In local coordinates, (2.25) reads simply

P ab∂bJ
r = 0. (2.26)
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Let L be a Lie algebroid over M and J : X → M,P be a fibered Poisson manifold and

let L act infinitesimally on X along J . P is said invariant if

lu(s)P = 0, (2.27)

for s ∈ Γ(L).

In local coordinates, the invariance condition (2.27) reads

ui
c∂cP

ab − ∂cui
aP cb − ∂cui

bP ac = 0. (2.28)

Let L be a regular Lie algebroid over M and J : X → M,P be a fibered Poisson

manifold and let L act infinitesimally on X along J leaving P invariant. An equivariant

moment map for the action is an R-linear map µ : Γ(ker ρ) → C∞(X) with the following

properties [33, 34, 44].

1) µ is C∞(M)-linear:

µ(fs) = (f ◦ J)µ(s), (2.29)

for f ∈ C∞(M) and s ∈ Γ(ker ρ).

2) µ is equivariant:

lu(s)µ(t) = µ([s, t]), (2.30)

for s ∈ Γ(L) and t ∈ Γ(ker ρ).

3) µ is a moment map for u:

u(s) = #P dXµ(s), (2.31)

for s ∈ Γ(ker ρ), where #P : T ∗X → TX is the sharp map associated to P by viewing

P ∈ Γ(Hom(T ∗X,TX)). These relations imply that

{µ(s), µ(t)}P = µ([s, t]), (2.32)

for s, t ∈ Γ(ker ρ).

Pick an adapted frame {ei} of L and set

µα = µ(eα). (2.33)

Then,(2.30), (2.31) in local coordinates read

uα
a + P ab∂bµα = 0, (2.34)

ui
a∂aµα − fβ

iα ◦ Jµβ = 0. (2.35)

The fact that µ(s) is defined for s ∈ Γ(ker ρ) rather than s ∈ Γ(L) may seem puzzling

at first glance. In regard to this, let us note that, if µ(s) were defined for s ∈ Γ(L), the

equivariance condition (2.30) would not be covariant. Let us note further that, when L is

an ordinary Lie algebra g, then ker ρ = L and one has µ : g → C∞(X) as usual.

In the geometrical framework illustrated above, a pivotal role is played by the action

of a Lie algebroid L over M on a fibered Poisson manifold J : X → M,P . In this respect,

there are two important extremal cases deserving mention.
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a) M = X and J : X → X the identity map. In this case, the infinitesimal action of L on

X reduces to the canonical infinitesimal action of L on M , for which u = ρ. Further,

P is necessarily trivial and thus trivially invariant under L (see eqs. (2.25), (2.27)).

b) M = pt and J : X → pt the constant map. In this case, the infinitesimal action of L

on X yields an ordinary infinitesimal action of the Lie algebra associated to L on X,

whose fundamental vector field is u. Further, the Poisson structure P is subject only

to the invariance condition under the Lie algebra action but is otherwise arbitrary

(see again eqs. (2.25), (2.27)).

The general case is in a sense intermediate and interpolates between the two above

extremal cases.

3. The Lie algebroid Poisson sigma model

In this section, we shall construct a sigma model canonically associated to the following

geometrical data (cf. section 2).

1. A regular Lie algebroid L over M .

2. A fibered Poisson manifold J : X → M,P

3. An infinitesimal action of L on X along J leaving P invariant.

4. A equivariant moment map µ for the action.

We shall call it Lie algebroid Poisson sigma model for evident reasons. We shall use a

BV formalism [35, 36] following the geometrical approach of AKSZ [37] and Cattaneo and

Felder [38, 39].

The base space of the model is the parity shifted tangent bundle T [1]Σ of a closed

surface Σ, the world sheet. The target space of the model is a graded manifold, the parity

shifted vector bundle over X

XL,J = (J∗L)∗[0] ⊕ (J∗ ker ρ)∗[−1]. (3.1)

The fields of the model organize in a superfield Φ ∈ C∞(T [1]Σ, T ∗[1]XL,J ), where T ∗[1]XL,J

is the parity shifted cotangent bundle of XL,J . Locally in target space, Φ is given as a

sextuplet of superfields (xa, bi,Bα,ya, c
i,Cα) of degrees (0, 0,−1, 1, 1, 2), respectively. The

triples (xa, bi,Bα), (ya, c
i,Cα) correspond to the base and fiber coordinates of T ∗[1]XL,J ,

respectively. In turn, xa, (bi,Bα) correspond to the base and fiber coordinates of XL,J . We

note that x ∈ C∞(T [1]Σ,X) and that b ∈ Γ(x∗((J∗L)∗[0])), B ∈ Γ(x∗((J∗ ker ρ)∗[−1])),

c ∈ Γ(x∗(J∗L[1])), C ∈ Γ(x∗(J∗ ker ρ[2])), while y does not have an analogous simple

interpretation. See app. A for details on covariance for the manifold T ∗[1]XL,J .

The field space is equipped with a degree −1 symplectic form obtained by pulling

back with the evaluation map of C∞(T [1]Σ, T ∗[1]XL,J ) the canonical symplectic form of

T ∗[1]XL,J and then integrating over T [1]Σ:

ΩL,J =

∫

T [1]Σ
̺
[
δxaδya + δbiδc

i + δBαδCα
]
, (3.2)
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where ̺ is the invariant supermeasure on T [1]Σ. From this, one obtains the BV antibracket

(·, ·)L,X in standard fashion:

(F,G)L,J =

∫

T [1]Σ
̺

[
δrF

δxa

δlG

δya

−
δrF

δya

δlG

δxa
+

δrF

δbi

δlG

δci
(3.3)

−
δrF

δci

δlG

δbi
+

δrF

δBα

δlG

δCα −
δrF

δCα

δlG

δBα

]
,

where δl,r/δφ denotes left/right functional derivation with respect to the superfield φ.

The action of the model is

SJ,P =

∫

T [1]Σ
̺

[
ya

(
dxa + ui

a(x)ci
)

+ µα(x)Cα +
1

2
P ab(x)yayb (3.4)

+ bi

(
dci−

1

2
f i

jk(J(x))cjck+δi
αCα

)
−Bα

(
dCα − fα

iβ(J(x))ciCβ
)]

.

For the target space global definedness of the integrand, it is absolutely crucial that the

Poisson structure P satisfies the tangentiality condition (2.26). This follows straight-

forwardly from eqs. (A.1) in app. A. Above, one views u ∈ Γ(Hom(J∗L, TX)) and

µ ∈ Γ((J∗ ker ρ)∗), as allowed by (2.14), (2.29).

The properties of the target space geometry of the sigma model make SJ,P satisfy the

BV classical master equation [35, 36]

(SJ,P , SJ,P )L,J = 0. (3.5)

The verification is a straightforward calculation exploiting certain combinations of

the local coordinate relations (2.7), (2.8), (2.10), (2.11), (2.18), (2.19), (2.24),

(2.26), (2.28), (2.34), (2.35). We observe that these relations are sufficient but not nec-

essary conditions for the validity of (3.5). This fact is a recurrent feature of the AKSZ

formulation of sigma models.

Associated with the master action SJ,P is the BV field variation operator δJ,P :=

(SJ,P , ·)L,J . The BV field variations are:

δJ,P xa = dxa + ui
a(x)ci + P ab(x)yb, (3.6a)

δJ,P ya = dya + ∂aui
b(x)ybc

i + ∂aµα(x)Cα +
1

2
∂aP

bc(x)ybyc (3.6b)

−
1

2
∂aJ

r(x)∂rf
i
jk(J(x))bic

jck − ∂aJ
r(x)∂rf

α
iβ(J(x))ciBαCβ,

δJ,P ci = dci −
1

2
f i

jk(J(x))cjck + δi
αCα, (3.6c)

δJ,P bi = dbi + f j
ki(J(x))bjc

k + fα
βi(J(x))BαCβ − ui

a(x)ya, (3.6d)

δJ,P Cα = dCα − fα
iβ(J(x))ciCβ , (3.6e)

δJ,P Bα = dBα + fβ
iα(J(x))ciBβ − bα − µα(x). (3.6f)

The master equation (3.5) implies that SJ,P is invariant under δJ,P ,

δJ,P SJ,P = 0 (3.7)
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and that δJ,P is nilpotent

δJ,P
2 = 0. (3.8)

It is interesting to examine what happens in the two extremal cases considered at the

end of section 2.

a) In this case, M = X and J is the identity map idX . Since P = 0 identically, if we also

set µ = 0, we get a sigma model canonically associated to the Lie algebroid L, which

we call Lie algebroid sigma model. It is simple to check that the basic relations obeyed

by the anchor and the structure functions, eqs. (2.8), (2.9), are not only sufficient

but also necessary for the BV classical master equation (3.5) to hold.

b) In this case, M = pt and J is the constant map. L is an ordinary Lie algebra

acting infinitesimally on X and P is invariant under such an action. The resulting

sigma model is nothing but the Poisson-Weil model of refs. [25, 26] for trivial twisting

principal bundle. See section 8 for more on this point.

For general M and J , the Lie algebroid Poisson sigma model is consistently defined for

P = 0 and µ = 0 provided u(s) = 0 for s ∈ Γ(ker ρ). (In general, only the weaker condition

TJ(u(s)) = 0 holds, see eq. (2.16).) In that case, it reduces into the Lie algebroid sigma

model of the action Lie algebroid L ⋉ J (cf. section 2).

Inspection of the action (3.4) reveals that the Lie algebroid sigma model is a Pois-

son sigma model on the graded manifold XL,J twisted by a moment map potential term.

The target space 2-vector Π ∈ Γ(∧2TXL,J) of this Poisson sigma model is given by the

following expressions:

Πab(Ξ) = P ab(ξ), (3.9a)

Πa
i(Ξ) = ui

a(ξ), (3.9b)

Πa
α(Ξ) = 0, (3.9c)

Πij(Ξ) = −fk
ij(J(ξ))βk, (3.9d)

Πiα(Ξ) = −fβ
iα(J(ξ))Bβ , (3.9e)

Παβ(Ξ) = 0, (3.9f)

where ξa, (βi,Bα) are respectively the base and fiber coordinates of the bundle XL,J =

(J∗L)∗[0] ⊕ (J∗ ker ρ)∗[−1] and we have set ΞA = (ξa, βi,Bα) (cf. app. A). The rela-

tions (2.7), (2.8), (2.10), (2.11), (2.18), (2.19), (2.24), (2.26), (2.28), which ensure the ful-

fillment of the BV classical master equation (3.5), also ensure that the 2-vector Π satisfies

the Poisson condition.

4. Action Lie algebroid and Poisson cohomology

The Lie algebroid Poisson sigma model introduced in section 3 is characterized by the asso-

ciated BV cohomology [40, 41]. This in turn is intimately related with various cohomologies

associated with the target space geometry. In this section, we briefly review them.
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A Lie algebroid L over M is endowed with a natural cohomology, the Lie algebroid

cohomology. This is the cohomology of the complex (A∗(L), dL), where Ap(L) = Γ(∧pL∗)

consists of C∞(M)-multilinear antisymmetric maps ω : Γ(L)p → C∞(M) and the nilpotent

differential dL : Ap(L) → Ap+1(L) is given by the well-known Chevalley-Eilenberg formula:

(dLω)(s1, . . . , sp+1) =
∑

i

(−1)i+1lρ(si)(ω(s1, . . . , ŝi, . . . , sp+1)) (4.1)

+
∑

i<j

(−1)i+jω([si, sj ], s1, . . . , ŝi, . . . , ŝj, . . . sp+1),

with s1, . . . , sp+1 ∈ Γ(L).

The Lie algebroid cohomology complex can be described alternatively in superge-

ometric terms as follows. There is an isomorphism Γ(∧∗L∗) ≃ C∞(L[1]) defined by

ω → 1
p!ω(ξ, . . . , ξ) with ω ∈ Γ(∧pL∗), where ξ = ξi ⊗ ei, ei and ξi being the elements

of a local frame of L and the corresponding degree 1 fiber coordinates of L[1], respectively.

Under the isomorphism, the differential dL turns into the homological vector field over L[1]

given by

dL = ξilρ(ei) −
1

2
fk

ijξ
iξj∂ξk, (4.2)

where ∂ξi = ∂/∂ξi. The supergeometric formulation is more convenient in general.

A representation of a Lie algebroid L over M is a vector bundle E over M together

with an assignment to each s ∈ Γ(L) of an R-linear map Ds : Γ(E) → Γ(E) with the

following properties:

Dfsσ = fDsσ, (4.3a)

Ds(fσ) = fDsσ + (lρ(s)f)σ, (4.3b)

[Ds,Dt]σ = D[s,t]σ, (4.3c)

where s, t ∈ Γ(L), f ∈ C∞(M) and σ ∈ Γ(E). The trivial representations is defined by

E = M×R and Dsh = lρ(s)h, with s ∈ Γ(L) and h ∈ C∞(M). If L is regular (cf. section 2),

the adjoint representation is defined by E = ker ρ and Dsu = [s, u], with s ∈ Γ(L) and

u ∈ Γ(ker ρ). If the base M is a point, then L is a Lie algebra and E is a vector space, and

a representation of L is just an ordinary Lie algebra linear representation.

One can define the Lie algebroid cohomology of L with values in a given representation

D of L. This is the cohomology of the complex (A∗(L,D), dL,D), where Ap(L,D) =

Γ(∧pL∗⊗E) consists of C∞(M)-multilinear antisymmetric maps ω : Γ(L)p → Γ(E) and the

nilpotent differential dL,D : Ap(L,D) → Ap+1(L,D) is given by the Chevalley-Eilenberg

formula (4.1) with lρ(si) replaced by Dsi
. There is also a supergeometric formulation

exploiting the isomorphism Γ(∧∗L∗ ⊗ E) ≃ Γ(πL[1]
∗E), where πL[1] : L[1] → M is the

bundle projection, in which dL,D turns into a homological vector field over L[1] given

by (4.2) with lρ(ei) replaced by Dei
. When E = M × R and Ds = lρ(s), one recovers the

usual Lie algebroid cohomology.

Let a Lie algebroid L over M act infinitesimally on a fibered manifold J : X → M

(cf. section 2). To the action, one can associate the action Lie algebroid cohomology, the
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Lie algebroid cohomology of the action Lie algebroid L ⋉ J (cf. section 2). The associated

cochain complex can be described as follows. The cochain space Ap(L ⋉ J) consists of the

antisymmetric maps ω : Γ(L)p → C∞(X) which are C∞(M)-multilinear meaning that

ω(s1, . . . , fsm, . . . sp) = (f ◦ J)ω(s1, . . . , sm, . . . sp), (4.4)

with s1, . . . , sp ∈ Γ(L) and f ∈ C∞(M). The differential dL⋉J is then given by the

Chevalley-Eilenberg formula (4.1) with ρ(si) substituted by u(si). In the supergeometric

formulation, dL⋉J is given by (4.2) with lρ(ei) replaced by lu(ei) and fk
ij by fk

ij ◦ J .

For analogous reasons, a representation D of L ⋉ J on a vector bundle E over X can

be described as an assignment to each s ∈ Γ(L) of an R-linear map Ds : Γ(E) → Γ(E)

satisfying

Dfsσ = (f ◦ J)Dsσ, (4.5)

for s ∈ Γ(L), f ∈ C∞(M) and σ ∈ Γ(E), in substitution of (4.3a), together

with (4.3b), (4.3c) with s, t ∈ Γ(L), f ∈ C∞(X) and σ ∈ Γ(E) and ρ(s) replaced by

u(s). The action Lie algebroid cohomology with values in E can then be described as fol-

lows. The cochain space Ap(L⋉J,D) consists of the antisymmetric maps ω : Γ(L)p → Γ(E)

which are C∞(M)-multilinear in the sense (4.4). The differential dL⋉J,D is then given again

by (4.1) with lρ(si) replaced by Dsi
. Similarly, in the supergeometric formulation, dL⋉J,D

is given again by (4.2) with lρ(ei) replaced by Dei
and fk

ij by fk
ij ◦ J .

To an action of L on X along J , there is canonically associated a representation of the

action Lie algebroid L ⋉ J defined as follows. Let T JX = ker TJ . Since J is a submersion,

T JX is a vector subbundle of TX. Then, letting E = T JX, Dsv = lu(s)v, with s ∈ Γ(L)

and v ∈ Γ(T JX), defines a representation D1 of L ⋉ J . The restriction to T JX is required

by the fulfillment of (4.5). In the same way, one can construct more general representations

Dq of L⋉J with E = ∧qT JX. These are the only representations, which we shall consider

in the following.

Let P be a Poisson structure on X (cf. section 2). As is well-known, P is char-

acterized its Poisson cohomology. This is the cohomology of the complex (V ∗(X), dP ),

where V q(X) = Γ(∧qTX) is the space of q-vector fields and the Lichnerowicz differential

dP : V q(X) → V q+1(X) is defined by

dP U = −[P,U ]∧∗TX , (4.6)

[·, ·]∧∗TX being the Schouten-Nijenhuis bracket. The cotangent bundle T ∗X of X has a

canonical Lie algebroid structure associated to the Poisson structure P [43]. The Poisson

cohomology of X equals the Lie algebroid cohomology of T ∗X.

Let J : X → M,P be a fibered Poisson manifold (cf. section 2). Then, by (2.25),

P ∈ Γ(∧2T JX). Define VJ
q(X) = Γ(∧qT JX). Then, (VJ

∗(X), dP ) is a subcomplex of the

complex (V ∗(X), dP ) and, thus, itself a complex. Its cohomology is the tangential Poisson

cohomology. Here, the term “tangential” refers to the foliation of X induced by J .

Suppose that a Lie algebroid L over M acts infinitesimally on a fibered Poisson man-

ifold J : X → M,P leaving P invariant (cf. section 2). Define AJ
p,q(L) = Γ(∧p(J∗L)∗ ⊗

∧qT JX). For fixed q, AJ
p,q(L) = Ap(L ⋉ J,Dq). Setting dJ,L = dL⋉J,Dq , one has that
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(AJ
∗,q(L), dJ,L) is a cochain complex. For fixed p, if ω ∈ AJ

p,q(P ), then dP ω ∈ AJ
p,q+1(P ),

as is easy to verify using again (2.25). Thus, (AJ
p,∗(L), dP ) is cochain complex. It can be

verified that dP dJ,L + dJ,LdP = 0. It follows that (AJ
∗,∗(L), dJ,L, dP ) is a double cochain

complex. We call the associated cohomology the action Lie algebroid Poisson cohomol-

ogy of L, J : X → M,P . The cohomologies of (AJ
∗,0(L), dJ,L), (AJ

0,∗(L), dP ) are the

action Lie algebroid cohomology of L and the tangential Poisson cohomology of P , respec-

tively. The total action Lie algebroid Poisson cohomology is the cohomology of the complex

(AJ
∗(L), dJ,L,P ), where AJ

∗(L) is the complex AJ
∗,∗(L), graded according to total degree,

and dJ,L,P = dJ,L +dP is the total differential. See app. C for a supergeometric description

of the double complex (AJ
∗,∗(L), dJ,L, dP ).

5. BV cohomology of the Lie algebroid Poisson sigma model

The BV cohomology of the Lie algebroid Poisson sigma model is the cohomology of the

nilpotent BV field variation operator δJ,P (cf. eqs. (3.6)). Since our sigma model is essen-

tially a Poisson sigma model on the graded manifold XL,J (cf. eq. (3.1)), one expects the

BV cohomology to be related to the Poisson cohomology of the target space Poisson struc-

ture Π (cf. eq. (3.9)). One expects also there to be corrections due to the twisting by the

moment map potential term. However, this point of view is not going to yield much in the

way of detailed cohomological information. Therefore, we shall not pursue it any longer.

To bring to focus the relation of the BV cohomology with the target space geometry

of the sigma model, it is convenient to consider, instead of the BV variation operator δJ,P ,

the mod d BV variation operator

δ̄J,P = δJ,P − d. (5.1)

As δJ,P , δ̄J,P is nilpotent

δ̄J,P
2 = 0. (5.2)

The cohomology of δ̄J,P is the mod d BV cohomology and is the object of our study.

Because of the presence of the 0- and −1-degree superfields bi and Bα, at each degree

the most general superfield involves an infinite number of target space background fields.

This renders the study of this cohomology problematic and not particularly illuminating.

Fortunately, there is a subset X∗ of superfields that is interesting, on one hand, and is

sufficiently restricted to allow for a simple study of the cohomology, on the other. X∗

consists of the superfields of the form

Φ =
∑

p,h,q

1

p!h!q!
Φ(p,h,q)i1...ipα1...αh

a1...aq(x)ci1 . . . cipCα1 . . . Cαhya1
. . . yaq

, (5.3)

where Φ(p,h,q) ∈ Γ(∧p(J∗L)∗ ⊗∨h(J∗ ker ρ)∗ ⊗∧qT JX). Restricting to T JX (cf. section 4)

amounts to the condition

Φ(p,h,q)i1...ipα1...αh

a1...aq−1b∂bJ
r = 0. (5.4)
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(5.4) is required by the target space global definedness of the right hand side of (5.3), as

follows easily from eqs. (A.1). It also implies that X∗ is closed under the action of δ̄J,P ,

as is apparent from eqs. (3.6). Thus, X∗ is a subcomplex of the mod d BV cohomology

superfield complex.

Using (3.6), one obtains straightforwardly the conditions on the Φ(p,h,q) entailed by

the mod d BV cocycle condition δ̄J,PΦ = 0. The conditions are most naturally expressed

by viewing the Φ(p,h,q) as maps Φ(p,h,q) : Γ(L)p × Γ(ker ρ)h → ΓJ(∧qT JX) antisymmetric

in the first p arguments and symmetric in the last h arguments and C∞(M)-linear in the

same sense as (4.4). However, the resulting expressions are not very illuminating in the

general case and, so, we shall not write them down explicitly. Rather, we shall consider

the first few low degree cases, because of their special interest.

Degree 0. If Φ ∈ X0, then it is of the form

Φ = φ(x), (5.5)

where φ ∈ C∞(X). Imposing δ̄J,P Φ = 0 leads to the equations

#P dφ = 0, (5.6a)

lu(s)φ = 0, (5.6b)

with s ∈ Γ(L).

From a cohomological point of view, (5.6) states that φ is a 0-cocycle of the total action

Lie algebroid Poisson cohomology complex (cf. section 4). In more conventional terms, φ

is a Casimir function of the Poisson structure P invariant under the action of L.

In the extremal case a of section 2, (5.6a) is trivially satisfied as P = 0 and (5.6b)

reduces into lρ(s)φ = 0. In the extremal case b, (5.6) states that φ is a Casimir function

invariant under the action of the Lie algebra associated to L.

Degree 1. If Φ ∈ X1, then it is of the form

Φ = wa(x)ya + σi(x)ci, (5.7)

where w ∈ Γ(T JX), σ ∈ Γ((J∗L)∗). Imposing δ̄J,P Φ = 0 leads to a set of equations, which

can be cast as

−[P,w]∧∗TX = 0, (5.8a)

lu(s)w − #P dσ(s) = 0, (5.8b)

lu(s)σ(t) − lu(t)σ(s) − σ([s, t]) = 0, (5.8c)

lwµ(z) + σ(z) = 0, (5.8d)

with s, t ∈ Γ(L) and z ∈ Γ(ker ρ).

In cohomological terms, (5.8a)–(5.8c) state that (w, σ) is a 1-cocycle of the total action

Lie algebroid Poisson cohomology complex. In particular, by (5.8a), w is a 1-cocycle of

the tangential Poisson cohomology complex of P and, by (5.8c), σ is a 1-cocycle of the
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action Lie algebroid cohomology complex (cf. section 4). (5.8d) is a “boundary condition”

determining σ(z) for z ∈ Γ(ker ρ). More conventionally, since [w,P ]∧∗TX = lwP , (5.8a)

states that w is a Poisson vector field of the Poisson structure P , i.e. a vector field whose

flow leaves P invariant. When σ = 0, the flow leaves also invariant the moment map µ and

the Lie algebroid action vector fields u(s) for s ∈ Γ(L).

In the extremal case a of section 2, one has not only that P = 0 but also that w = 0,

by (5.4). Thus, (5.8a), (5.8b) are trivially satisfied. Further, by (5.8c), being u(s) = ρ(s),

σ is a 1-cocycle of the Lie algebroid cohomology complex and, by (5.8d), the restriction

of σ to Γ(ker ρ) is trivial. In the extremal case b, (5.8a) is the only non trivial condition.

Indeed, as ker ρ = L, σ(s) is expressed in terms of w and µ(s) for all s ∈ Γ(L) by (5.8d)

and (5.8b), (5.8c) are automatically satisfied if (5.8a) is.

Degree 2. If Φ ∈ X2, then it is of the form

Φ =
1

2
Qab(x)yayb − vi

a(x)ciya +
1

2
τij(x)cicj + να(x)Cα, (5.9)

in which Q ∈ Γ(∧2T JX), v ∈ Γ((J∗L)∗ ⊗ T JX), τ ∈ Γ(∧2(J∗L)∗) and ν ∈ Γ((J∗ ker ρ)∗).

Imposing δ̄J,P Φ = 0 leads to the equations

−[P,Q]∧∗TX = 0, (5.10a)

lu(s)Q − [P, v(s)]∧∗TX = 0, (5.10b)

−lu(s)v(t) + lu(t)v(s) + v([s, t]) + #P dτ(s, t) = 0, (5.10c)

lu(r)τ(s, t) − lu(s)τ(r, t) + lu(t)τ(r, s) − τ([r, s], t) + τ([r, t], s) − τ([s, t], r) = 0, (5.10d)

#Qdµ(z) + #P dν(z) − v(z) = 0, (5.10e)

lu(s)ν(z) + lv(s)µ(z) − ν([s, z]) − τ(s, z) = 0, (5.10f)

where r, s, t ∈ Γ(L) and z ∈ Γ(ker ρ).

From a cohomological point of view, (5.10a)–(5.10d) state that (Q,−v, τ) is a 2-cocycle

of the total action Lie algebroid Poisson cohomology. In particular, by (5.10a), Q is a 2-

cocycle of the tangential Poisson cohomology complex of P and, by (5.10d), τ is a 2-cocycle

of the action Lie algebroid cohomology complex. (5.10e), (5.10f) are boundary conditions

determining v(z) and τ(s, z) for s ∈ Γ(L) and z ∈ Γ(ker ρ). In more conventional terms,

setting P ′ = P + Q, u′(s) = u(s) + v(s) and µ′(z) = µ(z) + ν(z), (5.10a), (5.10b), (5.10e)

state that P ′ is a Poisson structure invariant under the flow of the vector fields u′(s)

and that µ′ is a (non equivariant) moment map for u′ to linear order in Q, v and ν (cf.

eqs. (2.22)),(2.27), (2.31)). When τ = 0, (5.10c), (5.10f) state further that u′ defines a new

action of L on X along J and that the moment map µ′ is equivariant under the new action

again to linear order in Q, v and ν (cf. eqs. (2.15), (2.30)).

In the extremal case a of section 2, one has not only that P = 0 but also that Q = 0,

v = 0, by (5.4). Thus, (5.10a), (5.10b), (5.10c), (5.10e) are trivially satisfied. Further,

by (5.10d), being u(s) = ρ(s), τ is a 2-cocycle of the Lie algebroid cohomology complex

and, by (5.10f), the restriction of τ to Γ(ker ρ) is trivial. In the extremal case b, (5.10a)

is the only non trivial condition. Indeed, as ker ρ = L, v(s), τ(s, t) are expressed in terms
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of Q, ν(s) and P , µ(s) for all s, t ∈ Γ(L) by (5.10e), (5.10f) and (5.10b)–(5.10d) are

automatically satisfied if (5.8a) is.

The mod d BV cohomology in higher degree is expected to exhibit a similar structure.

As usual, the degree 1 and 2 mod d cohomologies relate to the infinitesimal symmetries and

infinitesimal deformations of the target space geometry, respectively. Strictly speaking this

holds only when the action Lie algebroid 1- and 2-cocycles σ and τ above vanish. The inter-

pretation of σ and τ in the general case is as yet unclear and calls for further investigation.

It is interesting to compare the mod d BV cohomology of the Lie algebroid Poisson

sigma model in the case where M is a point and L is a Lie algebra with that of the

Poisson-Weil sigma model studied in ref. [26]. To begin with, one must recall that, in the

situation considered, the Lie algebroid Poisson sigma model reproduces the Poisson-Weil

sigma model for a trivial twisting principal bundle (cf. section 3). In the Poisson-Weil

model, in the general case, the superfield ci is a generalized connection and must be absent

in any expansion of the form (5.3) to have a superfield globally defined on the world-

sheet. Further, the coefficients of the expansion must be covariant under the action of the

symmetry Lie group to have a superfield invariantly defined in target space. For this reason,

the analysis of ref. [26] was limited to the sector of the mod d BV cohomology complex

formed by the superfields of the form (5.3) with no ci factors and covariant coefficients.1

Therefore, the comparison of Lie algebroid Poisson sigma model and Poisson-Weil sigma

model mod d BV cohomologies can be carried out at best only upon restricting to a

suitable sector of the former, that spanned by the superfields Φ of the form (5.3) with no

ci occurrences. By (5.7), in degree 1, this amounts to imposing that σ = 0. Inspection

of the 1-cocycle condition (5.8) shows that Φ is a 1-cocycle of the equivariant Poisson

cohomology (in the Cartan model), as found in [26]. Similarly, by (5.9), in degree 2, one

must have v = 0 and τ = 0 and the 2-cocycle condition (5.10) shows that Φ is a 2-cocycle

of the equivariant Poisson cohomology, again as found in [26].

6. Hamiltonian Lie groupoid actions and Poisson reduction

The notion of Lie groupoid is related to that of Lie algebroid in the same way as the notion

of Lie group is related to that of Lie algebra [40, 41]. Unlike what happens for Lie algebras

and groups, not all Lie algebroids integrate to a Lie groupoid. In this section, we review

briefly the theory of Lie groupoids and their associated Lie algebroids and of Hamiltonian

actions of Lie groupoids on fibered Poisson manifolds.

A groupoid consists of two sets G and M and five maps α : G → M , β : G → M ,

1 : M → G, ι : G → G, µ : G α×β G → G, where G α×β G = {(g, h) ∈ G × G|α(g) = β(h)}

with the following properties.

1) For m ∈ M , α(1m) = β(1m) = m.

2) For g ∈ G, α(g−1) = β(g) and β(g−1) = α(g).

1However, the analysis could have been generalized by introducing a fixed background generalized con-

nection Ai and replacing ci by ci
− Ai.
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3) For (g, h) ∈ G α×β G, α(gh) = α(h) and β(gh) = β(g).

4) For g ∈ G, g1α(g) = 1β(g)g = g.

5) For g ∈ G, g−1g = 1α(g), gg−1 = 1β(g).

6) For (g, h), (h, k) ∈ G α×β G, g(hk) = (gh)k.

Above, the standard notation ι(g) = g−1, µ(g, h) = gh is used. The structural maps α, β,

1, ι, µ are called source, target, unit, inversion and partial multiplication, respectively. For

m ∈ M , one sets Gm = α−1(m), Gm = β−1(m) and, for m,n ∈ M , Gn
m = Gm ∩ Gn.

A groupoid G over M is a Lie groupoid if G and M are smooth manifolds and the

maps α, β, 1, ι, µ are smooth with α, β surjective submersion, 1 and injective immersion

and ι a diffeomorphism. In what follows, we shall consider exclusively Lie groupoids.

The prototype Lie groupoid over M is the pair groupoid G = M ×M , whose structure

maps are defined by α(m,n) = n, β(m,n) = m, 1m = (m,m), (m,n)−1 = (n,m) and

(m,n)(n, p) = (m, p). Lie groupoids generalize Lie groups: a Lie group can be viewed as a

Lie groupoid over the singleton manifold M = pt.

A Lie groupoid G is called regular if, for each m ∈ M , the target map β restricts to

a map β : α−1(m) → M of locally constant rank. A Lie groupoid G is called transitive if

the map (α, β) : G → M × M is a surjective submersion. Every transitive Lie groupoid

is regular.

A (base preserving) morphism of two Lie groupoids G, G′ over M is a smooth map

F : G → G′ such that

1) α′ ◦ F = α, β′ ◦ F = β

3) For (g, h) ∈ G α×β G, F (gh) = F (g)F (h).

If H, G are two Lie groupoids over M and H is an immersed submanifold of G, then H is

a Lie subgroupoid of G if the natural injection I : H → G is a Lie groupoid morphism.

Let G be a regular Lie groupoid over M . Then, for m ∈ M , Gm
m is a Lie group, the

isotropy group of m. The isotropy groupoid of G, IG, is defined as the union of all isotropy

groups of G:

IG =
⋃

m∈MGm
m. (6.1)

With the structural maps and the differential structure inherited from G, IG is a Lie

groupoid and a Lie subgroupoid of G. IG is also a bundle of Lie groups.

Just as to any Lie group there is canonically associated a Lie algebra, to any Lie

groupoid G over M there is canonically associated a Lie algebroid AG over M . Explicitly,

one has

AG =
⋃

m∈MT1mGm (6.2)

with the vector bundle structure induced by that of TG. The Lie algebroid structure of

AG is defined as follows. A vector field X ∈ Γ(TG) is said right invariant if: 1) for g ∈ G,

X(g) ∈ TgGα(g); 2) for (g, h) ∈ Gα×β G, X(gh) = TgRhX(g), where, for h ∈ G, we define
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Rh(g) = gh with g ∈ Gβ(h). One can show that there is a one-to-one correspondence

between sections of AG and right invariant vector fields of G defined by

s̃(g) = T1β(g)
Rg s(1β(g)), g ∈ G, (6.3)

with s ∈ Γ(AG). The Lie bracket of two right invariant vector fields of G is also right

invariant. This allows to define the Lie bracket [s, t] of two sections s, t ∈ Γ(AG) through

the relation

[̃s, t] = [s̃, t̃]. (6.4)

The anchor ρ is defined by

ρ(s)(m) = T1mβ s(1m), (6.5)

for m ∈ M and s ∈ Γ(AG). It is straightforward to check that the basic relations (2.1)–(2.3)

are satisfied.

For the pair groupoid G = M ×M , AG = TM . If G is a Lie group, then AG = g, the

usual Lie algebra of G.

If G is a regular Lie groupoid, then AG is a regular Lie algebroid. Similarly, if G is a

transitive Lie groupoid, then AG is a transitive Lie algebroid (cf. section 2).

Let G, G′ be two Lie groupoids over M and let F : G → G′ be a groupoid morphism.

Then, setting

F∗(s)m = T1mF sm, (6.6)

with sm ∈ T1mGm, defines a Lie algebroid morphism (cf. eq. (2.12), (2.13)).

If H is a Lie subgroupoid of G, then AH is a Lie subalgebroid of AG (cf. section 2).

In particular, if G is a regular Lie groupoid, AIG is a Lie subalgebroid of AG. In fact, one

has AIG = ker ρ, as follows easily from (6.5).

Let G be a Lie groupoid over M and let J : X → M be a fibered manifold. A left

action of G on X along J is a smooth map λ : G α×J X → X, where G α×J X = {(g, x) ∈

G × X|α(g) = J(x)} with the following properties.

1) For (g, x) ∈ G α×J X, J(gx) = β(g).

2) For x ∈ X, 1J(x)x = x.

3) For (g, h) ∈ G α×β G, (h, x) ∈ G α×J X, g(hx) = (gh)x.

Above, the standard notation λ(g, x) = gx is used.

To a left action of G on X along J , there is canonically associated an infinitesimal

action of AG on X along J (cf. section 2). The associated map u : Γ(AG) → Γ(TX) is

defined by

u(s)(x) = T1J(x)
Ax s(1J(x)), x ∈ G, (6.7)

for s ∈ Γ(AG), where, for x ∈ X, we define Ax(g) = gx with g ∈ GJ(x). It is a simple

matter to check that the basic properties (2.14)–(2.16) of an infinitesimal action hold.

To a left action of G on X along J , there is canonically associated a Lie groupoid

structure over X on the pull back G α×JX. The structural maps are defined by s((g, x)) = x,
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t((g, x)) = gx with (g, x) ∈ G α×J X, 1x = (1J(x), x) with x ∈ X, (g, x)−1 = (g−1, gx) with

(g, x) ∈ G α×J X and and (g, x)(h, y) = (gh, y) with (g, x), (h, y) ∈ G α×J X such that

x = hy. The resulting Lie groupoid is called the action Lie groupoid corresponding to the

left action and is usually denoted by G ⋉ J .

It is an important result that A(G ⋉ J) ≃ AG ⋉ J : the Lie algebroid of the ac-

tion Lie groupoid G ⋉ J is isomorphic to the action Lie algebroid AG ⋉ J (cf. section 2,

eqs. (2.20), (2.21)).

Next, we discuss a generalization of Hamiltonian symmetry reduction for Lie groupoid

actions on fibered Poisson manifolds. We follow closely the treatment of Bos in [44].2

Let G be a regular Lie groupoid over M acting on a fibered Poisson manifold J : X →

M,P (cf. eqs. (2.22), (2.25)). P is said invariant, if it is invariant under the associated

infinitesimal action of AG (cf. eq. (2.27)). For P invariant, the action is said Hamiltonian,

if there exists an equivariant moment map µ for the AG action (cf. eqs. (2.29)–(2.31)).

Henceforth, we assume that P is invariant and that the action is Hamiltonian with moment

map µ.

As IG is a Lie subgroupoid of G and AIG = ker ρ, one can view the moment map as

a map µ : X → (AIG)∗ such that πAIG
◦ µ = J , where πAIG

: (AIG)∗ → M is the bundle

projection. Let 0 denote the zero section of (AIG)∗. Suppose that 0(M) ⊂ im µ. Suppose

further that, for each m ∈ M , the Lie group Gm
m is connected and that it acts freely and

properly on µ−1(0(m)). Then, for each m ∈ M , the quotient manifold

Xm := Gm
m\µ−1(0(m)) (6.8)

is a smooth manifold. Now, note that µ−1(0(m)) ⊂ J−1(m). Then, since P is fibered,

P
∣∣
J−1(m)

is a Poisson structure on J−1(m) (cf. eq. (2.25)). Likewise, since the u is pro-

jectable, u(z)
∣∣
J−1(m)

is a vector field on J−1(m), for all z ∈ Γ(ker ρ) (cf. eq. (2.16)). By

the classic result of Marsden and Ratiu [34], Xm inherits a Poisson structure (Marsden-

Weinstein quotient).

Suppose that µ and 0 are transversal, i.e. that, for any m ∈ M and any x ∈ X such that

µ(x) = 0(m), Tm0(TmM) and Txµ(TxX) are transversal in T0(m)(AIG)∗. Then, µ−1(0(M))

is a manifold. The map

⋃
m∈MXm = IG\µ

−1(0(M)) → M (6.9)

is a smooth family of Poisson manifolds.

Thus, under the assumption listed above, the Hamiltonian action of a regular Lie

groupoid G over M on a Poisson manifold X fibered over M along the fibration leaving

the Poisson structure invariant induces a family version of the Hamiltonian symmetry

reduction. This reduction is encoded in the target space geometry of the Lie algebroid

Poisson sigma model described in section 3, when the background Lie algebroid L is the

Lie algebroid AG of the Lie groupoid G.

2Actually, Bos considers only the symplectic case. Further, he uses the more precise term strongly

internally Hamiltonian in place of Hamiltonian.
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7. Examples

In this section, we shall illustrate a class of examples of the target space geometry of the

Lie algebroid Poisson sigma model. The geometrical data are listed at the beginning of

section 3.

Suppose that X is a vector bundle over M . There exists a vector bundle gl(X) over M

that fits in a short exact sequence of base preserving vector bundle morphisms of the form

0 // EndX
ι

// gl(X)
̟

// TM // 0. (7.1)

gl(X) is isomorphic to the direct sum bundle TM ⊕ EndX. The isomorphism is not

canonical depending on the choice of a splitting, a vector bundle morphism σ : TM →

gl(X) such that ̟ ◦ σ = idTM . The splittings are in one to one correspondence with the

connections of X. See [40] for background.

The details of the local description of the vector bundle gl(X) are provided in app. B.

We denote by mr and (µr, αA
B) the local base and fiber coordinates of gl(X). The

morphisms ι and ̟ are then given locally by ι(m,α) = (mr, 0, αA
B) and ̟(m,µ, α) =

(mr, µr), respectively.

gl(X) has a natural structure of Lie algebroid. Its anchor is the morphism ̟ appearing

in the sequence (7.1). Its Lie bracket is defined as follows. Let s, t ∈ Γ(gl(X)) be locally

given as s(m) ≃ (vr(m), sA
B(m)), t(m) ≃ (wr(m), tAB(m)), respectively. Then,

[s, t](m) ≃ ((vs∂sw
r − ws∂sv

r)(m), (vs∂st
A

B − ws∂ss
A

B − sA
CtCB + tACsC

B)(m)).

(7.2)

The Lie algebroid gl(X) is transitive and thus regular.

To any section s ∈ Γ(gl(X)), there is associated a linear vector field u(s) on X [40],

that is a vector field depending linearly on the fiber coordinates of X, as follows. Let

(mr, eA) and (µr, ǫA) be local base and fiber coordinates of TX, mr and eA being base and

fiber coordinates of X (cf. app. B). If s(m) ≃ (vr(m), sA
B(m)) locally, then

u(s)(m, e) ≃ (vr(m), sA
B(m)eB). (7.3)

The linear vector fields form a Lie subalgebra Γ(TX)lin of Γ(TX) and the map s → u(s)

defines a Lie algebra isomorphism Γ(gl(X)) ≃ Γ(TX)lin. Using this identification, one can

view gl(X) as a Lie algebroid whose sections are the linear vector fields of X.

To any section s ∈ Γ(gl(X)), there is associated a derivative endomorphism Ds of X.

A derivative endomorphism is an R-linear map D : Γ(X) → Γ(X) such that there is a

vector field uD ∈ Γ(TM) such that

D(fσ) = fDσ + (luD
f)σ (7.4)

for f ∈ C∞(M) and σ ∈ Γ(X) [40]. If s(m) ≃ (vr(m), sA
B(m)) locally, then

Dsσ
A(m) = (vr∂rσ

A − sA
BσB)(m). (7.5)
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Note that uDs = v. The derivative endomorphism form a Lie algebra DX if the Lie

bracket is defined as the usual operator commutator. The map s → Ds defines a Lie

algebra isomorphism Γ(gl(X)) ≃ DX . Using this identification, one can view gl(X) as

a Lie algebroid whose sections are the derivative endomorphisms of X. Upon doing so,

a representation of a Lie algebroid L over M on X can be regarded as a Lie algebroid

morphism D : L → gl(X) (cf. section 4, eq. (4.3)).

As X is a vector bundle over M , J : X → M is a fibered manifold, J being the bundle

projection. In local coordinates, Jr(m, e) = mr.

If L is a Lie subalgebroid of gl(X), then the map s ∈ Γ(L) → u(s) ∈ Γ(TX) defines an

infinitesimal action of L on X along J (cf. section 2). Indeed, (2.14)–(2.16) are satisfied,

as is easy to check from (7.2), (7.3).

If X is fibered Poisson manifold and P ∈ Γ(∧2TX) is its Poisson structure, then (2.26)

holds. In local coordinates, this yields the equations

P rs = 0, P rA = 0. (7.6)

Only the components PAB may be non zero. Thus, actually P ∈ Γ(∧2 Vert TX), where

Vert TX = J∗X is the vertical subbundle of TX. The Poisson condition (2.24) obeyed by

P reduces then into

PAD∂DPBC + PBD∂DPCA + PCD∂DPAB = 0. (7.7)

If ∂CPAB = 0, (7.7) is automatically satisfied. In that case, one can view P ∈ Γ(∧2X).

Let s ∈ Γ(gl(X)) and let P be invariant under the linear vector field u(s). Then, (2.28)

holds. Explicitly, if s ≃ (vr, sA
B), one has

vr∂rP
AB − sA

CPCB − sB
CPAC + sC

DeD∂CPAB = 0. (7.8)

If ̟(s) = 0, then u(s) is Hamiltonian if

vr = 0 (7.9a)

sA
BeB = −PAB∂Bµ(s), (7.9b)

for some function µ(s) ∈ C∞(X).

In general, the sections s ∈ Γ(gl(X)) such that (7.8) holds are not sections of some

regular Lie subalgebroid L of gl(X). If such an L can be found, however, then the infinites-

imal action of L on X leaves P invariant (cf. section 2, eq. (2.27)). Even when L does exist,

in general u(s) is not Hamiltonian for s ∈ Γ(ker ρ), where ρ = ̟
∣∣
L

is the anchor of L. We

do not know any general condition ensuring the existence of L and the Hamiltonianity of

its action on X. Below, we present a possible scenario where this can happen.

Suppose that P ∈ Γ(∧2TX) satisfies (7.6) and the linearity condition

PAB(m, e) = πAB
C(m)eC , (7.10)

where π ∈ Γ(∧2X ⊗ X∗). The Poisson condition (7.7) then becomes a purely

algebraic relation

πAD
E πBC

D + πBD
E πCA

D + πCD
E πAB

D = 0. (7.11)
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Thus, the dual bundle X∗ of X is a bundle of Lie algebras.

If s ∈ Γ(gl(X)) with s ≃ (vr, sA
B) locally, (7.8) is satisfied if and only if

vr∂rπ
AB

C − sA
DπDB

C − sB
DπAD

C + sD
CπAB

D = 0. (7.12)

This condition is purely algebraic in s. Thus, it defines a subspace in each fiber of gl(X).

With some regularity assumption on π made, this distribution of subspaces is a subbundle

L of gl(X). Since lu(s)P = lu(t)P = 0 implies lu([s,t])P = 0, L is in fact a Lie subalgebroid

of gl(X). L then acts infinitesimally on X along J leaving P invariant, by construction.

If s ∈ Γ(ker ρ), then vr = 0 and (7.12) becomes

sA
DπDB

C + sB
DπAD

C − sD
CπAB

D = 0. (7.13)

Then, for every m ∈ M , s(m) is a 1-cocycle of the Lie algebra cohomology of X∗
m with

values in ad X∗
m. If

sA
B = −πAC

BtC (7.14)

for some t ∈ Γ(X∗), this 1-cocycle is a 1-coboundary. In such case, u(s) is Hamilto-

nian: (7.9b) is fulfilled with

µ(s)(m, e) = tA(m)eA. (7.15)

In order this to be the case, it suffices to require that the 1st Lie algebra cohomology of

X∗
m vanishes for all m ∈ M .

The geometrical setup described above is automatically integrable. Let GL(X) be

the set of all linear isomorphisms T : Xm → Xn with m,n ∈ M . Then, GL(X) has a

natural structure of Lie groupoid over M : α(T ) = m, β(T ) = m, for T : Xm → Xn;

1m = idXm; the inversion and partial multiplication are the corresponding operations for

linear isomorphisms. It can be shown that AGL(X) ≃ gl(X) [40, 42]. Thus, gl(X) is

automatically integrable and so is every Lie subalgebroid L of gl(X).

8. Concluding remarks

In this final section, we briefly review and comment on the problems which are still open.

When M = pt and J : X → M is the constant map, the Lie algebroid L is an

ordinary Lie algebra acting infinitesimally on X leaving the Poisson structure P invariant.

As noticed in section 3, in this case the Lie algebroid Poisson sigma model reduces into the

Poisson-Weil model of refs. [25, 26] for trivial twisting bundle. The twisting bundle is a

principal bundle on the world sheet Σ with structure group G integrating the Lie algebra

L. It is the gauge bundle of the Poisson-Weil sigma model as a 2-dimensional gauge theory.

The natural question arises whether it is possible to generalize the construction described

in the present work in such a way to recover, in the Lie algebra case, the Poisson-Weil

model with arbitrary twisting bundle. Presumably, this requires the following.

1. The symmetry of the target space geometry is encoded in a Lie groupoid G over M

integrating L.
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2. The twisting structure is a principal groupoid bundle P with base Σ and structure

groupoid G.

Recall that a principal groupoid bundle P over a manifold Σ is a smooth fiber bundle

π : P → Σ endowed with a smooth right action µ of G along κ : P → M preserving the

fibers of P and such that the map

(pr1, µ) : P κ×βG → P π×πP : (p, g) 7→ (p, pg) (8.1)

is a diffeomorphism. Groupoid right actions are defined in a way totally analogous to left

actions (cf. section 6). Diagrammatically, the bundle can be represented as

P

κ
  A

A

A

A

A

A

A

A

π

��

G

β

��

α

��

Σ M

.

It can be shown that when M = pt and G is a Lie group, one recovers the customary

notion of principal (group) bundle. See [24] and references therein for background.

Unfortunately, at present, it is not clear to us how to implement this more general

form of twisting in a Lagrangian field theoretic framework essentially because we do not

know how to build objects globally defined on Σ which can be integrated out of the above

geometrical data. This is an open issue calling for further investigation.

As is well known, the BV master action of a field theory is not directly usable for

quantization: gauge fixing is required. Fixing the gauge consists in restricting to a suitable

Lagrangian submanifold if field space. It is notoriously a very difficult problem. Normally,

it can be done only in certain cases, when the background geometry has extra structures,

and there are no general methods for its implementation.

For the Poisson-Weil model, gauge fixing has been worked out by us in [26], taking

inspiration from the classical work of AKSZ [37], and has led to interesting topological field

theories such as the 2-dimensional Donaldson-Witten topological gauge theory [28, 29] and

the gauged A topological sigma model [30 – 32]. At the moment, we know no sensible

gauge fixing prescriptions of the Lie algebroid Poisson sigma model yielding interesting

topological field theories. As far as we know, there may not be any.

Generalized complex geometry [45, 46] has been the object of much interest in recent

years for its role in superstring flux compactifications [47]. In [48 – 50], following the AKSZ

philosophy of [38, 39] and extending the Poisson sigma model, we introduced a BV field

theoretic realization of generalized complex geometry, the Hitchin sigma model, and in [25],

we gauged it by coupling it to the Weil model. It would be interesting to generalize the

construction of the present paper to the Hitchin model. The target space geometry of the

“Lie algebroid Hitchin model” is expected to be extremely rich and interesting.

A. Analysis of covariance I

In this appendix, we shall present an analysis of covariance for the cotangent bundle

T [1]∗XL,J of the manifold XL,J defined in (3.1).
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Recall that L is a regular Lie algebroid over M acting infinitesimally on a fibered

manifold J : X → M . Since ker ρ is a subbundle of L, we conveniently use trivializations

of L adapted to ker ρ. Thus, the fiber coordinates {vi} of any vector v ∈ L get subdivided

as {vα} ∪ {vκ} and v ∈ ker ρ if and only if vκ = 0 for all κ. We denote by (T i′
j) the

transition matrix function of a generic change of adapted trivialization of L. The upper

left block of (T i′
j), (Tα′

β), is the transition matrix function of the associated change of

trivialization of ker ρ.

We denote by ξa, (βi,Bα) respectively the base and fiber coordinates of the vector bun-

dle XL,J = (J∗L)∗[0]⊕ (J∗ ker ρ)∗[−1] with respect to some trivialization. Then, the cotan-

gent bundle T ∗[1]XL,J has base coordinates (ξa, βi,Bα) and fiber coordinates (ηa, γ
i,Γα).

A straightforward differential geometric analysis shows that under a change of trivial-

ization, one has

ξa′

= F a′

(ξ), (A.1a)

βi′ = T−1j
i′(J

′(F (ξ)))βj , (A.1b)

Bα′ = T−1β
α′(J ′(F (ξ)))Bβ . (A.1c)

ηa′ = ∂a′F−1b(F (ξ))
[
ηb + T−1i

k′(J ′(F (ξ)))∂bJ
r(ξ)∂rT

k′

j(J(ξ))βiγ
j (A.1d)

+ T−1α
γ′(J ′(F (ξ)))∂bJ

r(ξ)∂rT
γ′

β(J(ξ))BαΓβ
]
,

γi′ = T i′
j(J(ξ))γj , (A.1e)

Γα′

= Tα′

β(J(ξ))Γβ , (A.1f)

Under a change of trivialization, the anchor and structure functions transform

as follows

ui′
a′

(ξ′) =∂bF
a′

(ξ)T−1j
i′(J

′(F (ξ)))uj
b(ξ), (A.2)

fk′

i′j′(J
′(ξ′)) = T k′

n(J(ξ))T−1l
i′(J

′(F (ξ)))T−1m
j′(J

′(F (ξ))) (A.3)

×
[
fn

lm(J(ξ)) − T−1n
h′(J ′(F (ξ)))ul

a(ξ)∂aJ
r(ξ)∂rT

h′

m(J(ξ))

+ T−1n
h′(J ′(F (ξ)))um

a(ξ)∂aJ
r(ξ)∂rT

h′

l(J(ξ))
]
.

Exploiting the above relations, it is straightforward though lengthy to verify the target

space global definedness of the sigma model action (3.4).

B. Analysis of covariance II

In this appendix, we shall present an analysis of covariance for the vector bundle gl(X)

studied in section 7.

Let X be a vector bundle over M . Let mr, eA be the base and fiber coordinates

associated with a given trivialization of X, respectively. Under a change of trivialization,

they transform as

mr′ = Φr′(m), (B.1a)

eA′

= ΘA′

B(m)eB , (B.1b)

where (ΘA′

B) is the transition matrix function of the trivialization change.
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Consider next the vector bundle TX. To each trivialization of X, there corresponds one

of TX, with associated base and fiber coordinates (mr, eA), (µr, ǫA), respectively. Under

a change of trivialization, one has (B.1) and

µr′ = ∂sΦ
r′(m)µs, (B.2a)

ǫA′

= ∂rΘ
A′

B(m)µreB + ΘA′

B(m)ǫB . (B.2b)

TX is actually a “double vector bundle” [40]: it is not only a vector bundle over X but

also one over TM . This becomes apparent upon considering (mr, µr) as base coordinates

and (eA, ǫA) as fiber coordinates.

The vector bundle gl(X) can be described locally by specifying an atlas of local coordi-

nates together with the coordinate change transformation relations. To each trivialization

of X, there corresponds one of gl(X) with base coordinates mr and fiber coordinates µr,

αA
B , transforming according to (B.1a), (B.2a) and

αA′

B′ = ∂rΘ
A′

C(m)Θ−1C
B′(Φ(m))µr + ΘA′

C(m)αC
DΘ−1D

B′(Φ(m)). (B.3)

A connection of X is given in a trivialization by local 1-forms Ar
A

B(m)dmr transform-

ing under the change of trivialization (B.1) as

Ar′
A′

B′(m′) =∂r′Φ
−1s(Φ(m))

[
− ∂sΘ

A′

C(m)Θ−1C
B′(Φ(m)) (B.4)

+ ΘA′

C(m)As
C

D(m)Θ−1D
B′(Φ(m))

]
.

Upon picking a connection, there is defined a vector bundle isomorphism gl(X) ≃ TM ⊕

End X locally defined by (µr, αA
B) → (µr, ᾱA

B), where

ᾱA
B = Ar

A
B(m)µr + αA

B . (B.5)

C. Action Lie algebroid Poisson cohomology

In this appendix, we present a supergeometric description of the action Lie algebroid Pois-

son double complex (AJ
∗,∗(L), dJ,L, dP ) introduced in section 4. The following construction

is based on the graded vector bundle J∗L[1] ⊕ T ∗[1]X with base X. AJ
∗,∗(L) and dJ,L ,

dP are then realized as a subspace of functions on J∗L[1]⊕ T ∗[1]X and as degree 1 vector

fields on J∗L[1] ⊕ T ∗[1]X, respectively.

Denote by ξa and (γi, ηa) the base and odd fiber coordinates of J∗L[1] ⊕ T ∗[1]X,

respectively. Then, a generic function Φ ∈ C∞(J∗L[1] ⊕ T ∗[1]X) has the form

Φ =
∑

p,q≥0

1

p!q!
φ(p,q)

i1...ip
a1...aq(ξ)γi1 . . . γipηa1 . . . ηaq (C.1)

with φ(p,q) ∈ Γ(∧p(J∗L)∗ ⊗ ∧qTX). Now, define the degree −1 vector fields on J∗L[1] ⊕

T ∗[1]X

Kr = ∂aJ
r(ξ)∂η

a, (C.2)

where ∂η
a = ∂/∂ηa. So, recalling that AJ

p,r(L) = Γ(∧p(J∗L)∗ ⊗ ∧rT JX), it appears that

AJ
∗,∗(L) is identified with the intersection of the kernels of the Kr.
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By inspection, one can check that the differentials dJ,L , dP of AJ
∗,∗(L) are then

identified with the degree 1 vector fields on J∗L[1] ⊕ T ∗[1]X

dJ,L = ui
a(ξ)γi∂a − ∂bui

a(ξ)γiηa∂η
b −

1

2
fk

ij(J(ξ))γiγj∂γk, (C.3)

dP = −P ab(ξ)ηa∂b +
1

2
∂cP

ab(ξ)ηaηb∂η
c, (C.4)

where ∂γi = ∂/∂γi. These satisfy the graded commutation relations

[dJ,L,Kr] = ∂sρi
r(J(ξ))γiKs, (C.5a)

[dP ,Kr] = 0, (C.5b)

[dJ,L, dJ,L] = −∂rf
k
ij(J(ξ))uk

a(ξ)γiγjηaK
r, (C.5c)

[dJ,L, dP ] = 0, (C.5d)

[dP , dP ] = 0, (C.5e)

as can be checked using (2.8), (2.18), (2.19), (2.24), (2.26), (2.28). Therefore, dJ,L , dP

preserve the subspace of functions AJ
∗,∗(L) and are nilpotent and anticommute on it, as

they should.
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